
Computing the Envelope for Stepwise-Constant Resource

Allocations

Nicola Muscettola

NASA Ames Research Center

Moffett Field, California 94035-1000

mus@email, arc. nasa. qov

Abstract. Comlmting tight resource-level bounds is a fundamental problem in the con-

struction of fle_ ible plans with resource utilization. In this paper we describe an efficient
algorithm that builds a resource envelope, the tightest possible such bound. The algorithm
is based on traasforming the temporal network of resource consuming and producing

events into a flow network with nodes equal to the events and edges equal to the neces-
sary predecessor links between events. A staged maximum flow problem on the network

is then used to _ompute the time of occurrence and the height of each step of the resource
envelope profih,. Each stage has the same computational complexity of solving a maxi-

mum flow probiem on the entire flow network. This makes this method computationally
feasible and promising for use in the inner loop of flexible-time scheduling algorithms.

1 Resource Envelopes

Retaining temporal _exibility in activity plans is important for dealing with execution uncer-

tainty. For example, flexible plans allow explicit reasoning about the temporal uncontrollabil-

ity of exogenous ew.nts [11] and the seamless incorporation of execution countermeasures.

Fgxed-time schedules (i.e., the assignment of a precise start and end time to all activities) are

brittle and it is typically very difficult to exactly follow them during execution. For an example
of the effect of fixed-time schedules in an intelligent execution situation, consider the "Skylab

strike" [6], when during the Skylab 4 mission, astronauts went on a sit-down strike after 45

days of trying to catch up with the exact demands of a fast paced schedule with no flexibility

for them to adjust to the space environment.

A major obstacle to using flexible schedules, however, remains the difficulty of computing the
amount of resources needed across all of their possible executions. This problem is particularly

difficult for multiple-capacity resources (such as electrical power) that can be both consumed

and produced in any amount by concurrent activities. Techniques have been developed [5]

[10] for giving conservative estimates of the resource levels needed by a flexible schedule,

yielding both an upper bound and a lower bound profile on the resource level over time. In the

context of a systemalic search method to build flexible plans, resource-level bounds can be

used at each search step as follows: a) as a backtracking test, i.e., to determine when the

lower/upper bound in,_erval is outside of the range of allowed resource levels at some time and

therefore no fixed-time instantiations of the plan is resource-feasible; and b) as a search termi-

nation test, i.e., to determine when the lower/upper bound range is inside the range of allowed

resource levels at all :imes and therefore all fixed-time instantiations of the plan are resource-

feasible.

Bound tightness is extremely important computationally since a tight bound can save a poten-

tially exponential am_,unt of search (through early backtracking and solution detection) when

compared to a looser bound. In this paper, we discuss how to compute the resource-level enve-

lope, i.e., the measur,'_ of maximum and minimum resource consumption at any time for all

fixed-time schedules in the flexible plan. At each time the envelope guarantees that there are

twofixed-timeinstaatiations,oneproducingtheminimumlevelandtheotherthemaximum.
Therefore,theresou:ce-levelenvelopeisthetightestpossibleresource-levelboundforaflexi-
bleplansinceanyighterboundwouldexcludethecontributionof atleastonefixed-time
schedule.If theresoarce-levelenvelopecanbecomputedefficiently,it couldsubstitutelooser
boundsthatarecuFentlyusedin theinnercoreof constraint-postingschedulingalgorithms
(Laborie2001)withthepotentialforgreatimprovementsinperformance.
Toappreciatethed_fficultyofcomputingtheresourcelevel,wecancomparethecasesofa
fullyflexibleplan_iththatofaplanwithasinglefixed-timeinstantiation.Inthefixed-time
case,theenvelopedegeneratestotheresourceprofilethatisusedin theinnerloopoftradi-
tionalschedulingalgorithms[2][15].Computingfromscratcharesourceprofileischeap.It is
easytoseethatits_xorstcasttimecomplexityisO(NlgN)whereNisthenumberofactivi-
tiesintheflexibleplan.Considernowafullyflexibleplanandassumethatwenaivelywanted
tocomputetheresource-levelenvelopeforaflexibleplanbysimplyenumeratingallschedules
andtakingthemaximum/minimumofallresourcelevelsatalltimes.Sinceaflexibleactivity
planhasanumberofpossibleinstantiatedfixed-timeschedulesthatisexponentialinthenum-
berofevents,suchnffvemethodisclearlyimpracticalinmostcases.
Notethat"resource-evelenvelopecalculation"isnot equivalent to "scheduling with multiple

capacity", an NP-hard problem. For example, note that a reduction of the envelope calculation

to scheduling is not straightforward. Consider the interval between minimum and maximum

envelope at a given t_me. It is true that a solution to the scheduling problem can be obtained in

polynomial time if tte envelope interval is always completely contained within resource avail-

ability (in which case all fixed-time instantiations are legal schedules). However, if at least two

times the envelope interval is partly outside the availability bound, one can generate examples

in which the envelop: cannot tell us whether there is a fixed-time schedule that is within avail-

ability at all times or whether for all schedules the resource level is outside availability at some

time. Discriminating between these two cases still requires search.

This paper presents a polynomial algorithm for the computation of resource-level envelopes

based on a novel combination of the theory of shortest-paths in the temporal constraint net-

work for the flexible plan, and the theory of maximum flows for a flow network derived from

the temporal and resource constraints. We develop the theory, show that the algorithm is cor-

rect, and that its asymptotic complexity is O(N O(maxflow(N))), where N is the number of

start/end times of the activities in the plan, which is at most twice the number of activities, and

O(maxflow(N)) is tl_e complexity of a maximum flow algorithm applied to an auxiliary flow

network with N nodes. We believe that this method wilt be efficient in practice, since experi-

mental analysis [I] show the practical cost of rnaxflow to be as good as O (N 1.5). However this

paper is a theoretical contribution and a definitive answer to its practical complexity will re-

quire further experim:ntal work.
In the rest of the paper we introduce some notation and describe the formal model of activity

networks with resomce consumption. Then we review the literature on resource contention

measures and show aa example in which the current state of the art is inadequate. The discus-

sion of our algorithm follows. Some informal examples to establish an intuitive understanding

of our method are fir:;t given. Then we establish the connection between maximum flow prob-

lems and finding set_ of activities that have the optimal contribution to the resource level.

These sets are then shown to compute an envelope. Finally, we describe a simple envelope

algorithm and its complexity, and conclude discussing future work.

2 Resource Envelopes

Figure 1 shows an activity network with resource allocations. Our notation is equivalent to that

of previous work on fiexible scheduling with multiple-capacity resources [5][10]. The network

has two time variable; per activity, a start event and an end event (e.g., els and ele for activity

A0, a non-negative flexible activity duration link (e.g., [2, 5] for activity A0, and flexible

separationlinksbetweenevents(e.g.,[0, 4] from e3e to e,_). A time origin, Ts, corresponds to

time 0 and supports _eparation links to other events. Without loss of generality we assume that

all events occur after Ts and before an event T, rigidly connected to Ts. The interval TsT, is
the time horizon T of the network.

<e2s. r21> [2.3] <ezc, r22>

A2

,4]
<e3s, r31>

[I, 5] [0, Aa <e_, -r,>

[0, +,_1
A3 <e3©, r32 >

T_ [30, 30] T,

rl • [1,4] r_l e [-7.-5]
r2t • [-1, 3] r3z• [1, 3]

rzz• [1,2] r4 _ [2, 4]

Figure 1: An activity network with resource allocations

Time origin, events and links constitute a Simple Temporal Network (STN) [8]. Unlike regular

STNs, however, each event has an associated allocation variable with real domain (e.g., r3_

for event e3_) representing the amount of resource allocated when the event occurs. We call

this augmented netwc_rk R a piecewise-constant Resource allocation STN (cR-STN). In the

following we will as,;ume that all allocations refer to a single, multi-capacity resource. The

extension of the results to the case of multiple resources is straightforward. An event e- with

negative allocation is a consumer, while an e ÷ with positive allocation is aproducer.

This formalization cevers many of the usual models for resource allocations. For example,

note that an event can be either a consumer or a producer in different instantiations of the

allocation variables (e.g., event ez_ for which the bound for rn is [-1, 3]). This allows reason-

ing about dual-use actwities (e.g., the activities of starting a car and running it make use of the

alternator as either a power consumer or producer). Moreover, some events can have resource

allocations that are opposite to each other (e.g., el, vs. e_s). This allows modeling allocations

that last only during aal activity's occurrence, such as power consumption. Note, however, that

this model does not ower continuous accumulation such as change of energy stored in a bat-

tery over time. A conservative approximation can be achieved by accounting for the entire

resource usage at the activity start or end.

We will always assun e that the cR-STN is temporally consistent. From the STN theory [8],
this means that the shc_rtest-path problem associated with R has a solution. Given two events e_

and ez we denote with le,e=lthe shortest-path from el to ez. We will call a full instantiation of

the time variables in R a schedule s(.) where s(e) is the time of occurrence of event e accord-

ing to schedule s. The :_et S contains all possible consistent schedules for R. Each event e has a

time bound [et(e), It(e)], with et(e) and It(e) respectively the earliest and latest time for e. The

time bound represents the range of possible time values s(e) for all se S. From the STN the-

ory, we know that et(et = - leT_l and It(e) = ITse[.Finally, given three events, el, e2 and e3, the

triangular inequality among shortest paths le_e31_<le_ez[+ leze_[holds.

A fundamental data s:_ructure used in the rest of the paper is the anti-precedence graph,

Aprec(R), for a cR-STN R. The anti-precedence graph is similar to the precedence graph of

[10] with the following differences: a) the links are in reverse order; 2) it does not distinguish

between the set of strict precedence edges, E<, and the set of precedence edges that allow time

equality, Es; and 3) several possible kinds of precedence graphs are allowable for a network

R. Formally, Aprec(R! is a graph with the same events as R and such that for any two events

etandezwithlelezl-'_0thereisapathfromeltoezinAprec(R).Alternatively, we can say that

an event el precedes another ez in the anti-precedence graph if el cannot be executed before ez.

A way to build an anti-precedence graph is to run an all-pairs shortest-path algorithm on R and

retain only the edge_ with non-positive shortest distance. Smaller graphs can also be obtained

by eliminating domil;ated edges. The choice of precedence graph type may affect performance

but not the correctne,;s of the algorithm described here.

The cost of computing Aprec(R) is therefore bound by the cost of computing the all-pairs

shortest path graph for R, i.e., it is O(NE + N z Ig V) where N is the number of events (at most

twice the number of lctivities in the plan) and E is the number of temporal distance constraints

in the original cR-S'IN [7].

<4,_%3> <16 31,2>
<[3 9] ,,-41_'_ .,--''e2,

<[1,4]).4> '_'_ _ _,.-.-'_
e _ ele

<[2, I II,-5> <[3, 151,3>

Figure 2: Anti-precedence graph with time/resource usage

Figure 2 depicts one of the anti-precedence graphs of the network in Figure 1 with the time

bound and the maxirrum allowed resource allocation labeling each event.

3 Resource Contention Measures

Safe execution of a flexible activity networks needs to avoid resource contention, i.e., the

possibility that for some consistent time assignment to the events there is at least one time at

which the total amount of resource allocated is outside the availability bounds. There are es-

sentially two methods for estimating resource contention: heuristic and exact. Most of the

heuristic techniques [14] [12] [3] measure the probability of an activity requesting a resource

at a certain time. Thi:; probability is estimated either analytically on a relaxed constraint net-

work or stochastically by sampling time assignments on the full constraint network. The occur-

rence probabilities are then combined in an aggregate demand on resources over time, the

contention measure. Probabilistic contention can give a measure of likelihood of a conflict.

However, it is not a _,afe measure, i.e., the lack of detected conflicts does not exclude that a

variable instantiation !'or the cR-STN could cause an inconsistent resource allocation.

Exact methods avoid this problem. They compute sufficient conditions for the lack of conten-

tion. [I0] has a good :qurvey of such methods. Current exact methods operate on relaxations of

the constraint networl,. For example, edge-finding techniques [13] analyze how an activity can

be scheduled relative to a subset of activities, comparing the sum of all durations with a time

interval derived from the time bounds of all the activities under consideration. Relying solely

on time bounds ignores much of the inter-activity constraints and is effective only when the

time bounds are relatively tight. Therefore algorithms using these contention measures tend to

eliminate much of the flexibility in the activity network. Some recent work [5] [10] goes fur-

ther in exploiting inter-activity constraints. For example, [I0] proposes a balance constraint

that is based on conservative upper and lower bounds on the resource level immediately before

and after each event e. These bounds precisely estimate the contribution of events that must

precede e and overestimate the contribution of events that may or may not precede e. The

over-estimate assume_, that only the events with the worst contribution (producers for upper

bounds and consumer_ for lower bounds) happen before e. The balance constraint appears to

workwellinaflexi_leschedulingalgorithm[10]buttheboundsonwhichit isbasedmaybe
veryloosefornetworkswithsignificantamountsofparallelism.

Azn

"- "'_'- j [0,+_], L0_+oo1,,

-! All +1 _'" Aiz Alo

Figure 3: Over-constraining a flexible activity network

For example, consid_r the activity graph in Figure3, consisting of two rigid chains of n activi-

ties with the same fi'ced duration and the same fixed activity separation. Assume that the hori-

zon T is wide enough to allow any feasible ordering among them. Each activity consumes one

unit during its occurrence and the resource has two available units of capacity over time. It is

clear that the maximtma resource level requested by the flexible plan at any time cannot exceed

two, and therefore all schedules obtained by merging any schedule of the two chains are feasi-

ble. A scheduling algorithm using a resource-level envelope will therefore recognize that the

initial problem is alr_ady a feasible flexible plan and will terminate immediately. In contrast, a

scheduler using the balance constraint will always detect an over-allocation until it somehow

constrains the network (e.g., by systematic or local search) with constraints that are at least as

tight as the two following cases: a) the start activity n of one chain occurs no later than the

start of the second activity of the other; or b) more than two activities overlap and there is an

activity k on one chain that must start between the end of activity i and the start of activity i+2

on the other chain. The dashed arrows in Figure 3 represent the constraints posted in case b.

The balance constraint cannot correctly handle this situation because it cannot account for the

constraint structure of all possible parallel chains simultaneously. The rest of this paper shows

that the full constrair_t structure can be efficiently exploited in calculating the resource-level

envelope.

4 Resource Envelopes

As discussed in the irtroduction, we are seeking the maximum and minimum possible resource

production (consumption) among all possible schedules of R. Note that the maximum (mini-
mum) overall resource level induced by R for any possible schedule can always be obtained by

assigning each allocalion variable to its maximum (minimum) possible value. For any specific

value assignment to the allocation variables, each event has a constant weight: positive, c(e+),
for a producer and negative, - c(e--), for a consumer. Given a schedule s_ S and a time t ¢ T,
Es(t) is the set of events e such that s(e) < t. For any subset A of the set of events in R, E(R),

we define the resource-level increment as A(A) = 0 if A = 0, and A(A) = 1_.... •A c(e +) - c(e-)
if A _ 0. The following functions of time rigorously define the resource-level envelope:

• Resource level due to schedule s: L_(t) = A(Es(t)).
• Maximum re;ource envelope : L_,,(t) = max_•s (L_(t)).

• Minimum re:ource envelope: L_a,,(t) = mins•s (Ls(t)).

The resource level envelope that we seek is the interval bound function of time [L_,,(t),

Lm,_(t)]. Since the methods to compute L,,a° and L_, can be obtained from each other with

obvious term substitutions, we only develop the algorithm for L_.

Before we formally discuss our algorithm, we want to introduce some examples to give an

intuitive feel of the foandations of the method. First consider an activity network consisting of

asingleactivitythatproducesorconsumesresourcecapacityduringitsoccurrence(Figure
4(a)).WecouldbuildL,_ byaskingateachtimetcTwhetherA_canhappenbefore,afteror
canoverlapt. If theactivitystartswitharesourceproduction(Figure4(b)),thentheresource
levelwillbemaximumatt if Al starts,containsorendsatt.Thisisalwayspossiblebetween
et(ets)andIt(ere).WithinthisintervalLm,,(t)=1,whileoutsideL,_x(t)=0.Conversely,if AI
startswithaconsumer(Figure4(c)),thenthemaximumresourcelevelcanbezeroattimet
onlyif A1canstartaftert orcanendbeforet forsomeschedule.Thisispossibleonlybefore
lt(eu)andafteret(et,). Therefore, L,,.x(t) = -1 between lt(el_) and et(el,), and Lmx(t) = 0

everywhere else. This example suggests a strategy for computing Lmx that looks at each event

and considers the incremental contribution of the event's weight to the maximum resource

envelope at the earliest time for producers or at the latest time for consumers.

<[0, 3], rl> <[5, 10]. -rt>

el_ AI ele

(a)

II rl = 1 I rl= -I0 lO,V [] v

(b) (c)

Figure 4: Maximum resource-level envelope for a single activity

<[0,3],r1> <[4,10],-rt> <[5,11],r2> <[8,14],-r2>

e2_ A2 e2_ It, 1] e3_ A3 e3
(a)

lO rl=2;r2i 1 i r1= 1;r2=2

10 14 r

(b) (c)

Figure 5: Maximum level envelope for two chained activities

For a complex netwo) k, however, this simple strategy is insufficient. Consider a rigidly linked

pair of activities witt_ a reusable resource allocation (Figure 5(a)). In this case, the time of

occurrence of e2_ and e3_ are bound together. Looking at the contribution to the envelope of

each event in isolation, we would want to add the contribution of e.u as late as possible since it

is a consumer, and the contribution of e3_ as early as possible, since it is a producer. The deci-

sion of which time to choose depends on the total contribution of both events. The total contri-

bution will be added at lt(ez,) if the total contribution is a consumption (Figure 5(b)) or at

et(e_) if the total conlribution is a production (Figure 5(c)). Note that in both cases ez_ and e_

are pending at the seh_cted time, i.e., their contribution has not been added yet to the envelope

but they both could occur at the selected time. This suggests revising the strategy for comput-

ing L,,_x as follows: at the earliest or latest time of each event, select the set of pending events

whose resource-level increment is maximum, eliminate these events from the pending events

and declare the increment for L,,_ at that time to be their resource-level increment.

Now consider the network in Figure 1 and the event time bounds, maximum resource alloca-

tion and precedence graph in Figure 2. Assume that we want to compute Lmx(3). The set of

events that may be scheduled before, at or after time 3 is {el_, el,, e3_, e3e, e_}. However, of

these only {el,, e3s, e3_, e,ls} are pending since the contribution to Lm_ of el_ occurs at its earli-

est time 1. The subse_ of pending events that we need to consider at time 3 to compute the

incrementonLm_areallthosethatareforcedtooccuratorbefore3assumingthatsome
pendingeventoccur_'_at3.Thesesubsetsare{el,},{e3_},{e3s,e3,}and{el,,e3s,e_,e4_}.Unfor-
tunately,eachofthe;esubsetshasanegativeweightandthereforenoneofthemisselectedat
time3 since,fromr_hedefinitionofresource-levelincrement,theemptyeventsethasthe
maximum(zero)increment.Attime4thesetof pendingeventsisaugmentedwithez_anda
newsubsetofpendingeventswithpositiveweight,{el,,ez_, e3_, e_, e4s}, is possible. This gen-

erates the increment that, added to Lmx(3), gives us Lmx(4).

The selection of the pending events subset of maximum resource-level increment is the key

source of complexit) in calculating L_,. An exhaustive enumeration of all subsets is intracta-

ble in the general case. Fortunately, it turns out that this selection problem is equivalent to a

maximum flow problem for an appropriate flow network derived from Aprec(R). We discuss

this rigorously in the rest of the paper.

5 Calculating Maximum Resource-Level Increments

Consider an interval H_T. We can partition all events in R into three sets depending on their

relative position wittt respect to H: 1) the closed events Cn with all events that must occur

strictly before or at tt_e start of H, i.e., such that that It(e) < start(H); 2) the pending events Rn
with all events that can occur within or at the end of interval H, i.e., such that It(e) > start(H)

and et(e) < end(H); :Lnd 3) the open events On with all events that must occur strictly after H,
i.e., such that et(e) > end(H).
The set RH could contain events that can be scheduled both inside and outside H. If H=T, then

C'r = O, Rx = E(R) _nd OH = 0. If H is a single instant of time, i.e., H=[t, t], we will use the

simplifying notation I_t=C[t ' t], Rt=Rtt, tj and Ot=O[t, tl-

Assume that we want to compute the resource-level increment for a schedule s at a time t_ H.
This will always include the contribution of all events in CH and none of those in OH irrespec-

tive of s and t. With r_._spect to the events in Ru, if an event is scheduled to occur at or before t,

then all of its predect ssors (according to Aprec(R)) will also have to occur at or before t. In

other words, it is possible to find a set of events X E RH such that the events ep_Rn that are

scheduled no later thzn t in s are those in X or those ep _ Rri such that [exepl_<0 for some e_
X. We call this the predecessor set Px of X. Therefore, the resource level at time t for a given

schedule s is the sum of the weights of events in Cn and in Px _ Rn. Since we are trying to
maximize the resourc_ level, we will look for the sets Px with the maximum total weight.

An important propert'/that we will exploit later is that given two predecessor sets Px and Pv,
Px n Pv and Px _Pv are also predecessor sets.

5.1 Resource-Level Increments and Maximum Flow

We know that to con:pute Lm_ we want to look for sets Px with maximum weight. We find

these by computing a maximum flow for an auxiliary flow network built from Rn and

Aprec(R). For a complete discussion of maximum flow problems see [7]. Here we only high-

light some concepts arid relations that we will use.
First let us define the v.uxiliary flow problem that we will us to compute L,_,.

Resource Increment Flow Problem: Given a set of pending events RH for a cR-STN R, we

define the resource increment flow problem F(Ru) with source 0-and sink ras follows:

1. For each event e _ Rn there is a corresponding node etF(Rtt).

2. For each event e ÷ ERn, there is an edge 0"--9 e ÷with capaci_ e(e*).

3. For each event e- E Re, there is an edge e---_with capacity c(e-), i.e., the opposite of

e-' s weight in R

4. For each pair c_f el and e2 with an edge el--ge2 in the anti-precedence graph Aprec(R),

there is a corre:ponding link el--ge2 in F(Rn) with capacity +_

Figure6 showstheauxiliaryflowproblemfortheanti-precedencegraphinFigure2,with
everyedgelabeledwithitscapacity.

•.......................7::::::::::::::.ZZ_...............

.........5 :_°T

"\ /:
"-., ".\ C,.....

"-... _ _"2IL_ _.-"_ +oo 1" ..."
_ "-.=r-... e-_[_ j/"

_ +o_ q,- j 3

Intemal flow (precedence constraints)

................... Incoming flow (producer events)

Outgoing flow (consumer events)

Figure 6: Resource increment flow problem

Consistent with the theory of maximum flows, we will indicate fret, e2) as the flow associated

to a link el---+ez in F_Rn). The flow function has, by definition, several properties. It is skew-

symmetric, i.e., f(e2, el) = - fret, e2). Each flow has to be not greater than the capacity of the

link to which it is as:,ociated. For example, referring to the flow network in Figure 6, f(a, ez_)

< 2, while fie:,, or) 5 0 since there is no edge from ez, and tr, a situation equivalent to the ca-

pacity of the edge e,,---_a being zero. We also use the implicit summation notation f(A, B),

where B and A are disjoint event sets in F(RH), to indicate the flow f(A, B) = XaEAX_sf(a, b).

Consider now any subset of events A_RH and let us call A _ the set of events A _ = RH - A.

From the final property defining a flow function, flow conservation, we can obtain the follow-

ing: f({a}, A) = f(A, {x}) + f(A, A¢). The total network flow is defined as if{o}, RH) = f(Ru,

{x}). The maximum flow of a network is a flow function f_ such that the total network flow is

maximum.

A fundamental concept in the theory of flows is the residual network. This is a graph with an

edge for each pair of nodes in F(RH) with positive residual capacity, i.e., the difference be-

tween edge capacity and flow. Each edge in the residual network has capacity equal to the

residual capacity• For example, considering the network in Figure 6, assume that f(el,, x) = 3

and f(a, e_) = 2. The residual network for that flow will have the following edges: et,---_x with

capacity 1, x--->et, with capacity 3, and e2,---ccr with capacity 2. Also note that any residual

network for any flow of F(RrO will always have an edge of infinite capacity for each edge in

the precedence graph Aprec(R). An augmenting path is a path connecting a to x in the resid-
ual network. The existence of an augmenting path indicates that additional flow can be pushed

from _ to x. Alternatively, the lack of an augmenting path indicates that a flow is maximum.

A resource-level increment A(A) for an event set A _ R. is related to a flow in F(Rn) as fol-

lows. We define the producer weight in A as e(A*) = I_. • A e(e') and the consumer weight in

A as e(A-') = I__ e A (:(e-). We also define the producer residual in A for a flow f of F(RH) as

r(A +) = e(A +) - if{o}, A), i.e., the total residual capacity of the edges from a to A, and the

consumer residual in A, as r(A'-) = c(A") - f(A, {'I:}).

Lemma 1: A(A) = r(A +) - r(AD + f(A, A_).
Proof." A(A) = e(A +) - c(A-) = (e(A +) - if{o}, A)) - (c (A-) - if{a}, A)) = r(A +) - (c(A-) -

f(A, {x}) - f(A, A¢)) = r(A +) - r(A-) + ffA, A¢).[3

We now focus on predecessor sets such as Px.

Lemma 2: f(PxJ P_._) __0. Moreover, f(Px, PCx)--O if and only if f(e_, e2)--O for each ele POx

and e2 EPx.

Proof." From the deft aition of predecessor set there is no edge ez--->el in F(RH) with el_ l_x and

ez_Px. Therefore, f(e2, el) < 0 and f(Px, PCx) < 0. The second condition can be demonstrated

by observing that the sum of any number of non-positive numbers is 0 if and only if each num-
ber is 0.[:]

Corollary 1: d(Px) _Ir(Px+) -r(Px -).

Proof." Immediate from Lemma 1 and Lemma 2.

5.2 Maximum flows and maximum resource-level increments

We can now find the maximum resource-level increment set P,_x _ Rru. Since P,_,,.,,= O may

be true, the maximum resource-level increment is always non-negative. The computation of the

set uses a maximum flow f_x of F(RH). We indicate with r,,_(A) the producer/consumer re-

sidual of A computec for f,_,. The following fundamental theorem holds.

Theorem 1: Given a partial plan Rn, consider the (possibly empty) set P,,ax of events that are

reachable from the source o'in the residual network of some fm_x of F(RH). Pm_x is the prede-

cessor set with maximum d(Pmax) _>0.

Proof." Assume that r_x(e +) = 0 for each e ÷ _ F(Rn). In this case no event is reachable from a

in the residual network, thus Pm_, = O and A(P,_0 = 0. From Corollary 1, for any predecessor

set Px it is A(Px) < -r_x(Px-) < 0 = A(Pm0 and therefore A(P,_x) is maximum.

Assume now r_x(e+) > 0 for some e + _ F(Rn), in which case Pn_ is not empty. The following

three properties hold.

1. Pma_ is a predecessor set.
If not, there will be an event e2 _ P_ such that le_ezl-< 0 for some event el_ P_,. From the

definition of Aprec(R), however, we know that there must be a path in Aprec(R) from el to

ez. Since this path will be present in F(RH) with all links having infinite capacity, the path

will also always be present in any residual network for any flow. Therefore there is a path in

the residual netwoJ k going from a to el (by definition of Pm_,,) and then to ez. Therefore,

e2_ Pm_, which is a contradiction.

2. rm_,(P_o_-) = 0.
If not, there will b_ an event e- _ P,,,_ such that r,_x(e-) > 0. We can therefore build an

augmenting path of F(RH) as follows: 1) a path from a to e- with positive residual capacity

which exists by definition of P,,_; and 2) an edge e----)x with positive residual capacity

r,_(e-). The existtmce of the augmenting path means that f_,, is not a maximum flow,
which is a contradiction.

3. fmax(Pmax, PCmax) = 0

Since Pm_ is a predecessor set, from the proof of Lemma 2 we know that f_(Pm, P¢,,mO <

0. If fm,,(P,_,, I_,_,,) < 0, then there is a pair of events el_ Pm_ and ez_ I_,,,_ such that

fm_(el, ez) < 0. This means that the residual capacity from el to ez is positive and therefore

there is an edge el---_z in the residual network. But by definition of Pro,,, this means that

e2_ P,,_, which is a contradiction.

Applying the propertk_s of P_._, to Lemma 1, A(P_) = rmx (P,_+) - r,,m,,(P,_,,-) + f_(Pm_,
P_n_) = r_(P,r_ +) > 0.

To prove the maximaiity of P_,,, observe from Corollary 1 that a non-empty predecessor set
Px has A(Px) > 0 onl./if rm,,(e +) > 0 for some e + E Px. It is easy to see that Px is the set of

events reachable in thor residual graph from Px + _ P_+ and that the properties at points 2 and
3 above also hold for Px. Therefore, AOPx) = r_(Px +) < r,,_,,(P_ +) = A(P_,,), which proves

the maximality of Pm,._

The construction of P._x discussed before does not guarantee its uniqueness since it depends

on a specific maximum flow among potentially many for F(RH). The following theorem

proves, however, that P,,_x is indeed unique for all maximum flows of F(Rn) and that it con-

tains the minimum rmmber of events among all predecessor sets with maximum positive re-

source-level increment.

Theorem 3: The predecessor set Pm_ with maximum resource-level increment A(Pmax) and

with minimum number of events is unique across all maximum flows of F(Rtt).

Proof" Consider two maximum flows fmax,i and f_, k among all maximum flows of F(RH) and

assume that they produce two distinct maximum resource-level increment predecessor sets,

P_,, j and P_, k. From the rnaximality of their increment, it must be A(P,_,_k) = A(P_q) =
A_x. We can rewrite one maximum predecessor set as P_x,i = Pj,_ u Pk-i where Pjc_k= Pmxj

n Pm_,k and Pk_j= P,_,k -- Pm_,i. The hypothesis of distinction of P_,_j and P_x, k yields Pk-j
40.

First we observe that A(Pjca,) = Am_. If not, A(Pj-k) > 0 and A(Pk-j) > 0. But this means that

Pjuk = Pro,,0 U Pm_k is a predecessor set such that A(Pj_k) > A,_, which is a contradiction.

Consider now Pm_,i and let us call rj(e) the residual r_x(e) computed in flow f._,,j. Since

A(Pv,_) = A.m, it mast be rj(e +) = 0 if e + _ Pj-k. Also, rj(e-) = 0 for each e- _ P_,,i. From

Lemma 1, A(Pj-k) = f_,,,i(Pj-k, P_j-_) = 0. From Lemma 2 it follows that f._j(Pj-k, Pjc_k) = 0.
Hence, there cannot be a link in the residual network from an event in Pj_ to one in Pj-k.

Therefore, e _ Pj-k i_ not reachable from cr in the residual network and Pj-k = O. Since this is

true for any pair <j, k>, P_ is unique.

The same argument applied to Pm_ and pO_p,,_,, proves the minimality of Pro. where pO is a

predecessor set such :hat A(P o) = A_.D

6 Building Resource Envelopes

So far we know that _he resource level for a schedule s at time t e H is equal to Ldt) = A(Crl)

+ A(Px) for some predecessor set Px. However, it is not immediately obvious that the converse
also applies. Given any predecessor set Px, we want to be able to determine a time tx _ H, the

separation time, and a schedule Sx, the separation schedule, such that all and only the events
in CH_Px are schedtded at or before time tx. The existence of a separation schedule and a

separation time is nc_t obvious because of the upper-bound constraints in the STN, i.e., the

metric links between events that do not contribute to the construction of Aprec(R). If some

event occurs too earl_ with respect to tx, an upper-bound constraint may force some event to
occur before time tx even if it is not a successor in Aprec(R). We now show that indeed we
can find a separation time and schedule for any Px and therefore also for P_. For the latter,
we show that tx is one of the times at which the resource level is maximum over H for any

schedule. This yields the maximum resource envelope Lm_ if H= [t, t] and we scan t over the
horizon T.

6.1 Latest events

First we find the events in Px that will be scheduled at time tx. We say that e is a latest event

of Px if it is not a strct predecessor of any other event in Px, i.e., for any e' _ Px, [e' el -> 0.

We will call Px,late the set of all latest events in Px. Also, we define Px,,_,_y = Px - Pxa.t_-

The following property holds between events in Px,iatt and Px,early-

Property 1: Any ev,'nt ere Px, e_rty is a strict predecessor of some event e2 E Px, _a_, i.e.,

le:,ell < 0.

Proof"Since el _ P:_:.earlr,there must be an event ell E Px such that lellell < 0. If ell _ Px, late,

the property is prov,_n. Otherwise, we can find a finite chain of events ez--->elk---_...--_eyr->el

with ez_ Px, t_t_ and !ezelkl < 0, [e_jelj.d < 0 and {e_e_ I < 0, yielding [ezet[< 0 for the triangular

inequality of the shortest paths. If we could not find an ez _ Px, lat, to start such a finite chain,

the chain would have to become a cycle of events in Px,,arly, which contradicts the temporal

consistency of R.[3

6.2 Separation Time for Latest Events

We can construct a sr_paration time tx at which we will schedule all latest events.

Lemma 3: There is a time interval [tx, mi_ tx,m_] that intersects all time bounds

[et(e), lt(e)] with e E Px,_, and such that start(H) -<tx, ma._
Proof" There must be a time value in common among all time bounds in Px,l_t_. If not, there

would be two events el, ez E Px.tate such that et(el) > lt(ez) and, from the triangular inequahty,

le_ezl_<- et(e0 + ltq ez) < 0, which is inconsistent with the definition of Px,late. Observe that
there must be an evt_nt e _ Px,late such that It(e) = tx If start(H) > tx, ,_x, then It(e) <

start(H), which cont_"adicts e _ Rx,[3

We define the separ_tion time as tx= max (start(H), tx,_,,), with tx = start(H) if Px=O. We
can then show that each event in POx can be scheduled after tx.

Lenuna 4: For any e Jent e E P_x, It(e) > tx

Proof" By definition tff RH it must be It(e) > start(H). So we only need to consider the case in

which tx = tx,_in > start(H). In this case there is at least one event el e Pxjat¢ such that et(e0 =

tX,m_. For this event _t is le_eI_<- et(e0 + It(e). Since e E l_x, it must be that lel el > 0, other-
wise e would follow n Apred(R) an event in Px. Therefore, It(e) > et(el) + le_el > et(el) = tx,

mln.[:]

6.3 Separation schedule for predecessors

We now build the se[,aration schedule Sx for Px and tx, i.e., a schedule such that sx(e) < tx for

ee CHUPx and sx(e) > tx for e_ PCxuOx. Note that the following discussion holds also if

Px=O and tx= start(H).

The following algorithm builds the separation schedule.

1. Schedule all e_. Px. ,.t_ at tx, i.e., Sx (e) = tx.

2. Propagate time through R obtaining new time bounds [et'(e), It'(e)] for each e_ E(R).

3. Schedule all e_ ents e _ E(R) - Px,lat_ at their new latest time, i.e., sx(e) = It' (e).

For Sx to be a schedule, it must be consistent with respect to R. We see that step 1 is consistent

since: 1) tx belongs tc_ the intersection of all latest event time bounds; and 2) since for any pair

of latest events lele2l_>0,scheduling one at tx does not prevent any other latest events to be also

scheduled at time tx. Step 3 above is also consistent because it is always possible to schedule

all events at their late_, t times without temporal repropagation.

Now we need to sho_ that the property defining a separation schedule is satisfied for Sx. Note

that we already know that it is satisfied for events in Px,_t_. By definition it is also satisfied for

events in CH and On. Fherefore, we need to show that it is satisfied for Px,,_rly and P¢x.

a) It'(e) < tx for all e E Px,early
According to Property 1 we can pick an event el_Px, _t_ such that [el e I < 0. From the trian-

gular inequality we have It'(e) < It'(el) + [el e I < It'(el) = tx.

b)lt'(e) > tx for all e_ POx.

From Lemma 4 w_' know that before temporal repropagation it was It(e) > tx. After it, either

lt'(e)=lt(e), in wh:ch case the condition is satisfied, or It'(e) has changed due to a propaga-

tion that starts from some event el_ Px, Late.SO it must be It'(e) = tx + lelel. Since e_ POx, it

must be leleI> 0, c,therwise e would follow in Apred(R) an event in Px. Hence, It'(e) > tx.

We can now compute the maximum resource level for any schedule within the inverval H. In

the following, we indicate with Pmx(R.) the Pmx computed over F(R.).

Theorem 4: The macimum resource level for any schedule of R over an interval H_T is given

by A (On) + A(P=,=(Rn)).

Proof." We know that at any time t_ H the events in Rn that are scheduled before t are a prede-

cessor set Px. For :he resource level at time t it is always A (Ca) + A(Px) < A (CH) +

A(P,,_(RH)), the latter being the resource level at the separation time tx for the separation

schedule Sx._

There are two intere_ ting special cases of Theorem 4.

Corollary 2: The _naximum possible resource consumption for R over T is equal to

,d(P,,_(Rr)).

This means that estinating the maximum possible resource consumption for a flexible plan

over the entire time l'orizon has the same complexity as a maximum flow problem.

Corollary 3: Lm_(t) = A(C_)+ A(P_(RL)).

The last formula tell:_ us how to compute the resource-level envelope at a specific time. We

now need to find an _;fficient algorithm to compute the resource-level envelope over the entire

horizon T.

7 Efficient Computation of Resource Envelopes

From Corollary 3, th_ nai've approach to compute a resource-level envelope would be to iterate

over all possible t_ I. However, we only need to compute Lm_x at times when either Ct or Rt
changes. This can on!y happen at et(e) or It(e) for any e_ E(R). Therefore we need to compute

new levels for L,._x only 2N times, where N is the number of start/end events in the original

activity network. For each such computation, we need to: a) compute P_(Rt) by running a
maximum flow on a network with at most N nodes; and 2) collect and sum the events in Ct and

P_(Rt). The total complexity of the algorithm is therefore O(N O(maxflow(N)) + N2), where

O(maxflow(N)) is the: complexity of finding a maximum flow with an arbitrary maximum flow

algorithm. For modern algorithms using the "preflow push" method [9], the worst case com-

plexity can be O(N 3) Extensive empirical studies show that the practical complexity of varia-
tions of the method can be as fast as O(N Ls) [1]. This suggests that resource-level envelopes

could operate in the iTmer loop of scheduling search algorithms, especially if they can be com-

putated incrementally

8 Conclusions

In this paper we des_ ribe an efficient algorithm to compute the tightest exact bound on the

resource level induc,'d by a flexible activity plan. This can potentially save exponential

amounts of work with respect to currently available looser bounds. Future work will pursue

two directions. The first is developing more incremental algorithms for the computation of the

envelope. Using a temporal scanning of the events in the temporal network, it should be possi-

ble to significantly reduce the size of the networks on which the maximum flow algorithm

needs to be run. Thi_'; could significantly speed up the envelope calculation. The second direc-

tion will test the practical effectiveness of resource envelopes in the inner loop of search algo-

rithms for multi-capacity resource scheduling, such as those used in (Laborie, 2001). This

includes inner-loop backtracking and termination tests and variable and value ordering heuris-

tics that exploit more directly the properties of the resource envelopes.

Acknowledgeme nts

Ari Jonsson and Jeremy Frank were instrumental in pushing me to focus on this problem. Dur-

ing a dinner discussion at possibly the worst tourist restaurant in Paris, Grigore Rosu con-

vinced me that the l, ey of the resource-level envelope problem lies with the maximum-flow

problem. Paul Morri,_:_ gave me several helpful comments and suggested a simplification of the

proof of theorem 1. Finally, Amedeo Cesta, Mary Bemardine Dias, Gregory Dorais, Paul

Tompkins, an anonymous reviewer of a previous, unsuccessful submission, and a reviewer of

the current successfu! one, gave several comments that helped me improve the presentation.

This work was performed with the support of the Intelligent Systems project of the Computing,

Information and Conununication Technologies research program of the National Aeronautics

and Space Administration.

References

1. R.K. Ahuja, M. Kodia Earn, A.K. Mishra, J.B. Orlin. Computational Investigations of Maximum Flow Algorithms,
European Journal of Operational Research, Vol 97(3), 1997.

2. K.R. Baker. lntroducton to Sequencing and Scheduling. Wiley, New York, 1974.

3. J.C. Beck, A.J. Daven:_ort, E.D. Davis, M.S. Fox. Beyond Contention: Extending Texture-Based Scheduling
Heuristics. in Proceedings ofAAAI 1997, Providence, RI, 1997.

4. A., Cesta, A. Oddi, S.F. Smith, A Constraint-Based Method for Resource Constrained Proiect Scheduling with
Time Windows, CMU RI Technical Report, February 2000.

5. A. Cesta, C. Stella. A qme and Resource Problem for Planning Architectures. Proceedings of the 4 'h European

Conference on Planm,_g (ECP 97). Toulouse, France, 1997.

6. H.S.F. Cc_)per Jr., Th,_ Loneliness of the Long-Duration Astronaut, Air & Space/Smithsonian, June/July 1996,
available at hup://www.airspacemag.com/ASM/Mag/index/1996/JJ/llda.html

7. T.H. Cormen, C.E Le_serson, R.L. Rivest. Introduction to Algorithms. Cambridge, MA, 1990.

8. R. Dechter, I. Meiri, J Pearl. Temporal Constraint Networks. Artificial Intelligence, 49:61-95, May 1991.

9. A.V. Goldberg, R.E. 'I arian. A New Approach to the Maximum-Flow Problem. Journal of the ACM, VoL 35(4),
1988.

10. P. Laborie, Algorithn_ for Propagating Resource Constraints in AI Planmng and Scheduling: Existing Ap-
proaches and New Results, Proceedings of ECP 2001, Toledo, Spain, 2001.

11. P. Morris, N. Muscettcla, T. Vidal. Dynamic Control of Plans with Temporal Uncertainty, in Proceedings of
IJCA12001, Seattle, _A. 2001

12. N. Muscettola. On the Utility of Bottleneck Reasoning for Scheduling. in Proceedings of AAAI 1994, Seattle,
WA, 1994.

13. W.P.M. Nuijten. Time and Resource Constrained Scheduling: a Constraint Satisfaction Approach. Phi) Thesis,
Eindhoven University of Technology, 1994.

14. N. Sadeh. Look-ahead _echniques for micro-opportunistic job-shop scheduling. PhD Thesis, Carnegie Mellon

University, CMU-CS -_:_1- 102, 1991.

15. M. Zweben, M.S. Fox. Intelligent Scheduling. Morgan Kaufmann, San Francisco, 1994.

